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ON THE NUMBER OF SUBGRAPHS OF PRESCRIBED TYPE OF
PLANAR GRAPHS WITH A GIVEN NUMBER OF VERTICES

N. ALON and Y. CARO
Department of Mathematics, Tel Aviv University, Tel Aviv, Israel

For a planar graph H and a positive integer n we study the maximal number f = f(n, H).
such that there exists a planar graph on n vertices containing f subgraphs isomorphic to H.
We determine f(n, H) precisely if H is either a complete bipartite (planar) graph or a maximal
planar graph without triangles that are not faces, and estimate f(n, H) for every maximal
planar graph H.

1. Introduction

All graphs considered are finite, undirected, with no loops and no multiple
edges, and unless otherwise specified, they are all planar. For every two graphs,
G and H, N(G, H) is the number of subgraphs of G isomorphic to H. G" is a
graph on n vertices. A triangulation G" is a maximal planar graph on n vertices,
i.e. a planar graph all of whose faces (including the unbounded face) are
triangles. For every graph H and for every n =1 put f(n, H)=max N(G", H),
where the maximum is taken over all planar graphs G ", (Clearly, this maximum
is attained for some triangulation G".) Hakimi and Schmeichel [2] investigated
f(n. H), where H = C, is a cycle of length k. They found that:

f(n, C5)=3n -8, for n =3, (1)
f(n,C)=(n’+3n—22)/2, forn=4, (2)

and that for k =5 there exist positive constants c,(k) and c¢,(k) such that:
c(k) n"™=f(n, C)<=cik) n™?, forall n=k

Here we determine f(n, H) precisely if H is either a complete bipartite
(planar) graph or a triangulation without triangles that are not faces, and
estimate f(n, H) for every triangulation H.

2. Notation and definitions

V(G) is the set of vertices of the graph G. G = H denotes that the graphs G
and H are isomorphic.
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If G is a triangulation, a cut of G is a triangle in G that is not a face. G 1s
cut-free if it includes no cuts. A subgraph of G that is a cut-free triangulation on
more than three vertices is called a block of G. b(G) is the set of all blocks of G
and ¢((7) is the set of all cuts of G.

A triangulation G is stacked if it is C; or if every block of G is isomorphic to
K.. (A stacked triangulation is in fact the graph of a stacked 3-polytope, as
defined in [3].)

K is the complete graph on k vertices, K, is the star with k edges, and K.
is the complete bipartite graph consisting of k independent vertices with two
common nonadjacent neighbours. I(k) is the graph consisting of k independent
edges. Wi (k = 3) is the wheel obtained by joining a new vertex to the k vertices
of the cycle C;.

3. The complete bipartite (planar) graphs

When one considers the problem of determining f(n, H) for various graphs H,
it seems natural 40 begin with the complete planar graphs K;= C, and K..
However, as was remarked, Hakimi and Schmeichel determined f(n, K) for all
n = 3. We shall determine f(n, K,) in Remark 3 of Section 4 as a special case of
Theorem 6. Therefore we begin here with the complete bipartite graphs. The
main results of this section are the following two theorems:

Theorem 1. For every k =2 and n = 4:
f(n, Ky.)=g(n k), 3)

where

g(nk)=2- (";')H. [2)+(n~4)-(:).

Theorem 2. For every k =2 and n = 4:

fin, Ksx) = h(n, k), (4)
where
(”;2\. if k=5 or if k=4 and n#6,
!
hink)=4 3 if k=4and n=6,

-
(" “)+3(n—4), ok =3 and n b,
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12 if k=3and n =6,
h("‘k): (n—Z

5 )+4n-l4. if k=2,

We begin with a simple lemma.

Lemma 3. If u, v and w are the degrees of three different vertices of a planar graph
G", then

ut+tv+w=2n+2,

Proof. Let x,, x5, ..., x, be the vertices of G" and suppose that u, v and w are
the degrees of x;, x, and x;, respectively. Since G" contains no K, there are at
most two vertices x; with i =4 that are adjacent to x,, x, and x., Thus, the
number of edges that join x,, x; and x;, to some x, i=4, is at most
2:34+(n—5)-2=2n —4, and we obtain:

Uut+tv+w=6+02n—4)=2n+2. £

Proof of Theorem 1. Note thatif d,,d,, ..., d, are the degrees of the vertices of a
graph G", then

N(G" . Kix)= 2 (g*) , forall k=2.

Therefore f(n, Kyx) is just
max 2 (d’) .
i=1 k

where the maximum is taken over all degree sequences of planar graphs on n
vertices.

For every n =3 let 8" be the graph obtained by joining each of two adjacent
vertices to each of the n —2 vertices of a path of length n — 3. (Note that §* = K;
and S*'=K..)

As is easily checked, for every k=2 and n =4

f(n, K )= N(S", Kyx) = g(n, k). (5)

In order to complete the proof we have to show that for every k = 2 and every
graph G", where n =4,

N(G". Kix)=g(n k). (6)

We prove (6) for every fixed k by induction on n. If n =4, (6) is trivial. Assuming
it holds for n — 1. let us prove it for n (n =5). Let G" be a graph. Clearly, we
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may assume that G" is a triangulation. Let d, < d,<--- < d, be the degrees of
the vertices of G". Euler’s formula implies that 2/, d, = 6n — 12, and clearly
3=sd =d,<n—1. As remarked above

N(G" Ki.)=2, (f) : (7)
-l /

If y=(v,¥s...,y) and Z =(zy,...,2,) are nondecreasing sequences of
positive integers, and if there exist i and j, | <i <j < n, such that z, = y, — 1,
z;=y +1and z =y, for all [# i j, then we say that Z is obtained from y by a
simple improvement. It is easily checked that in this case

$0)<5 (). e

and the inequality is strict iff y, = k — 1.
Returning to our G" we consider two possible cases.

Case 1. d,=4.
In this case:

; 4~nf=2di=6n—-12,

and thus n = 6. It is easily checked that the vector of length n (3.3,4,...,4,
n—1,n —1) can be obtained from (d,,...,d,) by a finite sequence of simple
improvements. By (7) and (8) we obtain:

k=5 ({2 () -0 ()2 (5 ) -sn
as needed.

Case 2. d,=3.

Let x be @ vertex of degree 3 in G", and let u, v and w be the degrees of its
three neighhours. where 3<u < » = w = n — 1. The number of copies of K, in
G" that contain x is precisely

o ez (=) (2 2)

+ B + .

(k k-1 k-1 k=1

By Lemma 3 u + v + w = 2n + 2. [t is easily checked that there exist u’, v’, and
widsu'sv'sw'sp—1,suchthatusv', v=sv', wsw'andu'+v'+w'=
2n +2. The vector (3, n —2, n —2) can be obtained from {u'=1, o'=1, w'—=1)

by a finite number of simple improvements. Thus, the number of copies of K|,
in G" that contain x is:
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3 n—1 v—1 w—1
(k)+(k—1)+(k—l)+(k—l)
iy 3 u' -1 p'—1 w'—1
“‘(k)+(k—1)+(k—i)+(k —1)

s 3 (n —2
<D+ )2 (7Y ©)
By the induction hypothesis:

N(G"—x, Kix)=g(n—1,k). (10)

Combining (9) and (10) with the definition of g(n, k) we obtain:
= = ) 4 3 3 LFRETRAS,
N(G™.Ki) =< g(n 1,k)+(k)+(k_1)+2 (k_l) 2(n, k).

This completes the proof for Case 2 and establishes the theorem. (]

Remark 1. Theorem 1 states that for every k =2 and n =4 and for every graph
G":

N(G" Kix)=g(n k), (11)

and equality holds if G" is the graph §" appearing in the proof of the theorem.
One can easily check that the proof implies that for k =2,3,4 and n =k +1
equality holds in (11) iff G" = 8" :

Remark 2. The proof of Theorem 1 implies thatif n =12and d,<-:-=d, are
the degrees of the vertices of a triangulation G”, then:

NG K= (‘;) =12 (g) +(n—12)- (g) ,

=1

since (d,...,d,) can be obtained by a finite sequence of simple improvements
from the vector ¢ = (ci,. .., Ca), where

3 b r=2
& =

g, - ia=12.

Since every triangulation G" contains (** °) pairs of edges, and each such pair is
either K,, or I(2), we conclude that:

N(G",1(2)) < (3"2‘ 6) =13 (g) —{n —12)- (g) = (9n°—69n + 162)/2,

with equality iff the degree sequence of G" is ¢ In [1] it is proved that such a
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triangulation G” exists whenever n = 12, except for n = 13, and thus we obtain:
f(n 1(2))= (9n° — 69n + 162)/2,

for all n =12, except n = 13.

oof of Theorem 2 is similar to that of Theorem 1, although somew!
more complicated. The result of Hakimi and Schmeichel that appears as
equation (2) in this paper proves Theorem 2 for kK = 2. We prove the theorem
here for k =5 and give only an outline for k = 3, 4, since the proof in these cases
is rather lengthy and quite similar.

We need two simple lemmas.

Lemma 4. Let G" be a (planar) graph that has a vertex x of degreen — 1, (i.e. x is
adjacent 1o every other vertex of G"). If n =5, then G" contains two nonadjacent
vertices, each of degree <3,

®roof.! Note that we may assume that G" is a triangulation. We prove the
lemma by induction on n. For n =5 it is trivial. Assuming it holds for all n’,
S5=n'<n,let us prove it for n. Let G" be a triangulation, and let x be a vertex
of G" of degree n — 1. Since G" is a triangulation, there is a Hamiltonian cycle
C in G" — x. If no edge of G is a chord of C, then all vertices of C have degree 3
and the assertion of the lemma follows. Thus, we may assume that there is a
diagonal joining the vertices y and z of C. This diagonal splits C into two cycles,
C, and C, with a common edge yz. For i = 1,2 let H; be the induced subgraph
of G" with vertex set {x}U C.. We claim that H, contains a vertex ( of degree
<3in H,, t# x,y, z. Indeed, if | V(H,)| = 4 this is trivial, and if | V(H,)| = 5 this
follows fromr the induction hypothesis. Similarly H; contains a vertex r of degree
=3in H., r# x, v, z. However, the degree of t in H, equals its degree in G" and
the degree of r in H; equals its degree in G". Thus, { and r are two nonadjacent
vertices of G", each of degree =3 in GG", which completes the proof. O

Lemma 5. Let G" be a triangulation and let di=d,=---<=d, be its degree
sequence. If d=d,=d,=n -2, then for every k =35:

NG Ko =(", 7).

Proof. Since " includes no Ki., every K,, in G” is included in at most one

' Editorial remark. The following shorter proof was suggested by a referee. G" \{x} is outerpla-
nar, hence it has two nonadjacent vertices (n = 5) of valences =2 in G" \{x}; they are nonadjacent
vertices in G~ of valences =3.
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K,i in G". Clearly, every K;. in G" includes exactly two copies of K,, and
thus

N(G", K:,)<IN(G", Kl,,)=§§‘1 (f) . (12)

It is easily checked that the vector of length n (4,4,...,4,n —2, n —2) can be
obtained from the vector (d,, d., ... d.) by a finite sequence of simple improve-

ments. Therefore (12) implies

v k<t () <t e-2 () +2("07)= (%)

as needed. [J

Proof of Theorem 2 for k = 5. As is easily checked, forevery k =5 and n =4:

f(n, Kau) = N(S", Kz )= (n ;2) =h(n, k).

In order to complete the proof we have to show that for every k =5 and every
triangulation G", where n =4,

N(G", K;,t)ﬁ(ngz). (13)

We prove (13) for every fixed k by induction on n. If n = k + 1, (13) is trivial.
Assuming it holds for n —1, let us prove it for n (n =k +2). Let G" be a
triangulation, and let d, =d.= --- = d, be the degrees of its vertices. If d, =4,
then by Lemma 4 d, <n —2 and by Lemma 5 (i3) hoids, as needed. Thus, we
may assume that d, = 3. Let t be a vertex of degree 3in G", and let x, y and z be
its three neighbours. Let k,, k;, and k; denote the numbers of common
neighbours of x and y, y and z, and z and x, respectively, in V(G")\{x, y, 2. t}.
Since G" includes no K, it can be easily verified that k,+ k. + k; =< n — 2, and if
k,=0, then k,+k:+ky=n—4. Clearly, 0=k, k,,ky<n —4 and we may
assume that k, =< k. =< k.. It is easily checked that there exist ki, k!, and ki,
l<skiski<ki<n—4,suchthat k, <k/fori=1,2,3and ki|+ ki+ki=n—2.

The number of K,:’s in G" that contain t is clearly at most

S(2)=2 (1),

and since (1,1, n —4) can be obtained from (ki, k:, k3) by a finite number of
simple improvements, this number is at most

2'(k31)+(::?)=(:j)- (14)
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By the induction hypothesis:

NG =1 KL)% (";3) : (15)

Combining (14) and (15) we obtain:

T
N \

Tt oo e Y f"—i"\ f"—l\
e L v 25 VA OF 0 LG

This completes the proof and establishes Theorem 2 for k = 5. O

An outline of the proof of Theorem 2 for k = 3,4. For n =7 one can easily prove
the thearem by checking all the possible triangulations G". Clearly, for k =3,4
and n =8:

f(n,K::)= N(S", Ko )= h(n, k).

Thus, we have to show that for k = 3,4 and for every triangulation G", where
n=7,

N(G", Ksi)=h(n,k). (16)

We prove (16) for each of the two possible values of k by induction on n. For
n =7, (16) holds. Assuming it holds for n — 1, let G" be a triangulation and let
di=d.=---=d, be its degree-sequence. If d, =3, we proceed exactly as in the
proof for k =5. Thus, we may assume that d,=4. By Lemma 4 d,<sn -2 If
d,..=d, =n—2, we can show that G" must be the graph obtained by joining
each of two nonadjacent vertices to ¢ach of the n —2 vertices of the cycle G,
and, as is easily checked in this case, (16) holds. Therefore we may assume that
diz4,d,-..=n-3and d, =n —2. It iseasily seen that in this case the vector of
length n (4,4,...,4,5,n —3,n —2) can be obtained from the vector (d,,...,d,)
by a finite sequence of simple improvements, and using the same argument as in
the proof of Lemma 5 we conclude that for k = 3,4 and for cvery n =8:

N(Gnl K!.l) E%N(GN‘ Kl._l)

al [(n _3)(i) + (2) +(” k—3)+(ﬂ ;2)]
= h(n, k),
as needed. i

4. The triangulations

The main results of this section are the following two theorems.
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Theorem 6. If H is a cut-free triangulation on k vertices, k =4, then

f(n, HY=[(n =3)/(k —3)]. foralln=3.

Theorem 7. For every triangulation H that contains a cut and for every n = 4:
f(n, H)<12(n —4)/|Aut H |,

where |Aut H| is the number of automorphisms of H.

{Considering Theorem 6, one can easily verify that Theorem 7 holds for all
triangulations with four exceptions: the graphs of the triangule, the tetrahedron,
the octahedron, and the icosahedron.)

In order to prove Theorems 6 and 7 we need a few simple lemmas concerning
the blocks and the cuts of a triangulation. Since the contents of these lemmas
seem to be well known, we shall leave most of the proofs to the reader.

Lemma 8. Let G = G" be a triangulation, n = 4.

(1) If Tis a cut of G that splits G into twe triangulations, A and B, having T as a
common face, then ¢ (G) is the (disjoint) union of c(A), ¢(B) and {T}, and b(G)
is the (disjoint) union of b(A) and b(B).

(ii) Every face of G is contained in a unique block of G and every cut of G is
contained in precisely two blocks of G.

(ii) Let cb(G) denote the graph whose vertex set is b(G), and B,, B,€ b(G)
are joined iff their intersection is a cut of G. Then cb(G) is a tree.

(iv) [e(G)|=[b(G)I- 1.

Proof. Most assertions of part (i) can be easily verified. In showing that
b(G)C b(A)U b(B), use the fact that every block of G is a 3-connected graph.
Part (ii) and part (iii) are proved by induction on n, using the assertions of the
preceding part(s). Part (iv) follows immediately from (iii). a

Lemma 9. Let G" be a triangulation, n = 4.
(i) If G" has q blocks HY' H3:, ...,Hy, then

q

B=d=N.(n+3)

(ii) The number of cuts in G" is at most n —4, and equality holds iff G" is a
stacked triangulation.

Proof. Part (i) is proved by induction on g, using part (i) of Lemma 8. Part (ii)
follows easily from part (i), using part (iv) of Lemma 8. (Note that a block has at
least four vertices, and a block with four vertices is K..) a
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Lemma 10. Let T\, T,..., T, be q cut-free triangulations, each containing more
than three vertices. Then there exists a triangulation G with precisely q blocks
i (FIORR H, such that H, =T, for 1<i=<gq.

Proof. By induction on q. The case g =1 is trivial. If ¢ >1, and F 15 a
teianaulatinon with 4 — 1 hlaelke B H . weoamnrnhictn T, T . recnec_
phanlig il Wival i BOAMIRIRG D Eiy e e e 8 Rg-ig aoMITIGT PIIIC W0 J jye ey Ageis IUSPLL

tively, then the required triangulation G is obtained by gluing together F and an
isomorphic copy of T, along a common face. O

Lemma 11. Let H= H" and F = F" be two cut-free triangulations, n = 4. Let x,,
X1, and x; be the vertices of a face of H and let y,, y, and y, be the vertices of a
[t R W A, L DFERSR Py MES S ME  SSa  a TE OT PUP SO Sy NP e A RO Y ST IRREEE L o
JUCC O r. IRCA IRCTE CXINES Wi oS ONC DOMOTPprRIsit g . 11— indl SAuaficy

gx)=y, for 1=i=<3.

Proof. Let g be such an isomorphism. The edge x,x. is included in precisely two
triangles of H, one of them is x,x.xs. Let the other triangle be x,x;a. Similarly,
yi¥: is included in precisely two triangles of F, y,y.ys and y,y.b. Clearly, g must

eaticfv efn)Y=h Rv reneated annlication of thic aroument ane can eacilv chow
satisty g(a)=0. By rep apphication of this argument one can easily show

that g(c)is uniquely determined for all ¢ € V(H). L

Proof of Theorem 6. Let G" be a triangulation. By definition, every copy of H in
G" is a block of G". By part (1) of Lemma U:

n—3=N(G", H)-(k—3)
Therefore
f(n, HY=<[(n = 3)/(k - 3)].
Conversely, put r=[(n —3)/(k —3)]. By Lemma 10 therc is a triangulation

G = G """ with r blocks, each isomorphic to H. Thus:

RFl D FFN e o
N, 0 &7

[ _ INIF — 1
it — (K = 3)J.

W

0

Lr™
Iz )

‘i
‘

Fidls __ AN
IR 2) T

W
.

fln, H)
Remark 3. The proof of Theorem 6 implies that if H is a cut-free triangulation
on k vertices, k =4, and if k = 3 divides n = 3, then for every triangulation G":
N(G", H)= (n - 3)/(k —3),

and equality holds iff every block of G" is isomorphic to H. In particular, for
every n =3 and for every triangulation G":

N(G" K)=n -3,

and equality holds iff G" is a stacked triangulation.
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Note also that Euler’s formula and part (ii) of Lemxma 9 imply that for every
triangulation G", n = 3:

N(G", K3)<(2n —4)+(n —4)=3n -8, (17)

and equality holds iff G" is a stacked triangulation. This is just the result of
Hakimi and Schmeichel, quoted in equation (1) of this paper.

Proof of Theorem 7. Let H be a triangulation that contains a cut and let G" be a
triangulation, n = 5. We must show that

N(G", H)=12(n — 4)/| Aut H|. (18)

Let C be a cut of H and
isomorphism of H into G clearly maps C onto some cut T of G and maps B
onto a block of G that includes T. But T is included in precisely two blocks of G,
say A, and A,. The number of possible maps of C onto T is six. By repeated
application of Lemma 11 it is easily shown that there are at most six isomorph-
isms of H into G that map C onto T and B onto A,, and there are at most six
isomorphisms of H into & that map C onto T and B onto A.. Therefore there
are at most 12 isomorphisms of H into G that map C onto a given cut T of G.
By part (ii) of Lemma 9 the number of cuts in G is at most n —4, and thus there
are at most 12(n —4) isomorphisms of H into G. However, the number of such
isomorphisms is exactly

N(G",H) - |AutH|,
which implies (18). O

lat O lha o hlasle A8 IF thiat an;tninae £ Boae
el Ly U da DHUGh WUl 00 Wdl CUBIaims L. Lavely

Remark 4. Recall that S” is the graph obtained from K. by deleting an edge. By
Theorem 7:

N(G",8%) < 12(n —4)/| Aut(S®)| = n — 4, (19)

for every triangulation G", n = 5. The proof of Theorem 7 implies that equality
holds in (19) iff G" is a stacked triangulation and thus f(n, $*)= n — 4, for all
n =35, This shows that Theorem 7 is, in a sense, the best possible. However, by a
slight modification of the proof of Theorem 7 it is not difficult to obtain a better
upper bound for f(n, H), if H is a triangulation that has a cut but is not stacked.

Remark 5. For every fixed graph H, the function ¢ (n)= f(n, H) is clearly
super-additive, and therefore f(n, H)/n tends to a (finite or infinite) limit as
n—2c. By Theorem 7 this limit is finite for every triangulation H.

We eonclude the naner with the followin
WE conciuge tne r witn the 1ollowin

nan iecture of M A Perleg
pape njeciurce o1 NMLoA. I'Cl
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Conjecture. For every 3-connected (planar) graph H there is a constant ¢(H)
such that

f(n,H)<c(H) n, foralln.

(One should note that if H# K, is planar and not 3-connected, then f(n, H)=
¢(H)- n’ for a suitable positive constant ¢(H) and for all n = | V(H)|.)

By Theorem 7 the conjecture holds for every triangulation H. We can prove
the conjecture if H is any wheel W, (k =3). It is worth noting that unlike the
case of the triangulations, the constant ¢ (H) in the conjecture cannot be chosen
independently of H, since it can be easily shown that forevery k =2 and m = 1:

Fim - @k +1), Ws)=m - (Zk“) .

Acknowledgement

Thanks are due to Prof. M.A. Perles from the Hebrew University of Jerusalem .
for many useful suggestions.

References

[1] B. Grinbaum, Convex Polytopes (Interscience Publishers, London, New York and Sydney,
1967) pp. 271-272.

[2] S.L. Hakimi and E.F. Schmeichel, On the number of cycles of length k in a maximal planar
graph, J. Graph Theory 3 (1979) 69-85.

[3] G.C. Shephard, Subpolytopes of stack polytopes, Israel J. Math. 19 (1974) 292-296.

Received 25 April 1981



